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Abstract

Denote by u and v solutions to a strictly hyperbolic 2 x 2 system of
conservation laws. We show that if we assume a functional dependence v = a(u),

then the function oo “defines” Riemann invariants through an ordinary differential
equation for the unknown function a.

1. Introduction

We consider the following system of partial differential equations:

ou + 0,f(u, v) =0,

o+ 0,8, v)=0, (t,x) e R" xR. (1)

The latter system is known as system of conservation laws. If we are
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dealing only with classical solution to the system and rewrite it in the
vector form 6,U + 0, F(U) =0, U = (u, v), F = (f, g), usually we call it a

continuity equation. It is differential equation that describes the
conservative transport of some kind of quantity. Since mass, energy,
momentum, and other natural quantities are conserved, a vast variety of
physics may be described with continuity equations. Actually, continuity

equations are the (stronger) local form of conservation laws.

It is well known that system (1) can be diagonalized assuming that
the solutions © and v are smooth. More precisely, system (1) is equivalent
to the following system of continuity equations:

0,0 + Ay (u, V)00 = 0,
om + hg(u, v)0,M =0,
where o = o(u, v) and n = n(u, v) are so called Riemann invariants, and

L, 1 =1, 2, are eigenvalues of the matrix DF(u, v) = V(f(u, v), g(u, v)).

We provide necessary definitions (see e.g. [2, 4] :

Definition 1. By U = (1, v) € Q « R? we denote classical solutions

to system (1). By Q < R? we denote set of possible states of the solution
U. By

DF(U) = V(f(u, v), g(u, v)) = [Guf(u, v)  0.f(u, v))

aug(U, U) aug(U, U)
we denote Jacobian of the flux vector F(u, v)= (f(u, v), gu, v)),
(w, v) € Q.

By R; = R;(u, v), i =1, 2, we denote right eigenvectors of the matrix
DF(U).
Definition 2. Riemann invariants (o, n): Q — R2, Q c R?, of

system (1) are smooth scalar valued functions ® and n such that

Dw(U)R,(U) = 0, Dn(U)Ry(U) =0, U ecQ. @)
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Definition 3. System of conservation laws (1) is called hyperbolic if
the matrix DF(U) has two real eigenvalues A;(U) and Ay(U), and two

linearly independent eigenvectors R;(U) and Ry(U) for every U € Q.

Remark 4. Note that, in particular, the linear independency of the
vectors R;(U) and Ry(U) means that it must be R; = 0,i =1, 2, for

every U € Q.

The Riemann invariants are very important tool in investigating
many physical problems ( see e. g. randomly chosen [3, 4, 5]). In the

current paper, by putting v = a(x), we give the characterization of this

important notion through an ordinary differential equation. At the end
of the paper, we propose similar procedure for nxn system of

conservation laws.
2. Main Result

We want to describe Riemann invariants through an ordinary
differential equation. As we shall see, this is equivalent to reducing
system (1) to a scalar conservation law. In order to accomplish this we
put

v = afu),
for an a € C*(R). Substituting the latter relation in (1) we get:
ou + 0, f(u, a(w)) = 0,
o'(u)ou + 0,8, a(u)) =0, (¢ x)e R" xR. 3)

Multiplying the first equation of the system by a/(z) and then

subtracting it from the second one we get:

(fue'(@) + (/@) )oxu = (g, + 8,0 ()0, 4)
where

fu = auf(u’ U)|v=ot(u)’ f = avf(u’ U)| v=a(u)
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8y = aug(uf U)|v=(x(u)’ 8y = 6Ug(u’7 U)|U=oc(u).
From (4) it is natural to take

fuo' @) + o (o' @) = gy, + gy (@), (5)

which is actually the ordinary differential equation mentioned in the

abstract. Multiplying (5) by f, we get:
Putting Z = f,a'(x) equation (6) becomes:

Z2 + (fu _gv)Z _fvgu =0.

Solving this simple algebraic equation we get:

7 = — fu + 8y i\/(fu _gv)z + 4fugu
- 2

or, after recalling the form of Z:

_fu + 8 i\/(fu _gv)2 +4fvgu .

. 0

fva’(u) =

Then put o'(u) = z—z. As we shall see in (12), from the hyperbolicity of

(1), it must be f, # 0. Therefore, we get from (7):

do _ _fu + 8y i\/(fu _gv)2 +4fvgu .

F7 o, ®
For functions a, b : R? > R, and constants ¢; and cg, denote by
a(u, a) = ¢; and b(u, o) = ¢y 9

equipotential manifolds in (u, o) -plane (locally) defining integral curves

corresponding to equations (8) with + and -, respectively.

Now, it is easy to prove the following theorem.
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Theorem 5. Riemann invariants (o, n) for system (1) are given by
o(u, v) = a(u, v), and n(u, v) = b(u, v), (10)
for a and b given by (9)

Proof. It is not difficult to compute right eigenvectors R;,i =1, 2, to
DF(U). It holds:

Ry(w, v) = (2f,, ~ fu + 80 +V(fu — 80) + 4fo80);

Ry(w, v) = (2fy, — fu + 80 —(fu — &) + 408 ). )
Since we assumed that system (1) is strictly hyperbolic it must hold
fo = f,(u, v) =0, 12)

for (u, v) € Q, where Q c R? is the set of possible states of the solution
(u, v). Indeed, if f,(ug, vg) = 0 for an (ug, vy) € Q, it follows from (11)
that either R;(ug, vg) = 0 or Ry(ug, vg) = 0 contradicting hyperbolicity
of the system (see Remark 4).

Thus, we can rewrite equations (2) for Riemann invariants in the
following form:

2fy 2—2 + (— fu+ 80+ - 8 + 4fvgujg_(3 =0,
2fvg_2+(_ fu + 8 _\/(fu _gv)z + 4fvgu)g_2 =0.

System of characteristics for the latter linear partial differential

equations for ® and m are given by, respectively:

u = 2fv’ v = _fu + 8yt \/(fu _gv)2 + 4fvgu’

u = 2fv’ v = _fu + 8y — \/(fu - gv)2 + 4fvgu' 13)

Now, we return to ordinary differential equations (8). Introducing a
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parameter s € R and putting a = a(s) and u = u(s) we can rewrite (8)

as the following systems:

u :2fv, O.L:_fu"'gv""\/(fu_gv)2+4fvgu§
u = va, a = _fu + 8 _\/(fu - gv)2 + 4fvgu; (14)
where o = a(s) and u = u(s).

Comparing (14) and (8) we immediately obtain the statement of the
theorem.

In what follows, we give a note on a general system of nxn

conservation laws:

6tu1 + axfl(ul, Ug, ..., un) = O,
atuz + axf2(u1, Ug, ..., un) = 0,
Oy, + Oxfn(uy, ug, ..., u,) = 0. (15)

Similarly as before, we put
u = g;(w), i=2,..n,
where it is presumed that g; € C*(R). So, (15) is equivalent to
Opur + 0xh(ur, 82(u), ..., 8nlur)) =0,

85(u1 )0y + 0xfoluy, 8a(w1), ..., gn(1)) = 0,

&n(W)oguy + 0, fn(ug, 82(1q), ..., 8,(1)) = 0.

Multiplying the first equation by g!(x;), subtracting ith equation from it,

i =2,...,n, and arguing as in (4), we obtain system:
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A SO R SO A SO A ) A
1

:%(ul, go(q),--., gn(ul))+...+%(u1, go(uy),..., 8, (u1))gn (),

(B s ) 0, ) )t ) s )
1 n

=%(u1, 8o )., 8pug))+-- +%(u1, g2, gn(1))gn (),

() ) T, ) D) )
1 n

o, ) B 10)) 2, B30 ) 000 DR (1)
(16)

. . . of;

For practical reasons, we introduce notation ai(ul, go(uy)...,
.
j

gn(w)) = a;; and gi(y;) = x;. Now, in terms of linear algebra, system

(16) can be rewritten as:

a1 Q19 QAin 1 a1 ai19 Ain 1
a11X9 QA19X9 A1p,X9 X9 _ Qo1 Qa99 Qoy, X9 (17)
. . . . . - . . . . . ’
a11X%y, A19Xy, Xy Xn an1 a9 Ann Xn

It is clear that the latter system does not have to posses any solution.
Furthermore it is very complicated ( actually impossible in most cases ) to
find analytic expression for a solution to system (17) if n > 2. Therefore,
interesting question of finding connection between number of zeros to

(17) and existence of the coordinate system of Riemann invariants for

(15) remains open if n > 2.
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