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Abstract 

Denote by u and v solutions to a strictly hyperbolic 22 ×  system of 

conservation laws.  We show that if we assume a functional dependence ( ),uv α=  

then the function α  “defines” Riemann invariants through an ordinary differential 
equation for the unknown function α. 

1. Introduction 

We consider the following system of partial differential equations: 

( ) ,0, =∂+∂ vufu xt  

                              ( ) ( ) .,,0, RR ×∈=∂+∂ +xtvugv xt                        (1) 

The latter system is known as system of conservation laws. If we are 



V. BOJKOVIC and D. MITROVIC 580

dealing only with classical solution to the system and rewrite it in the 
vector form ( ) ( ) ( ),,,,,0 gfFvuUUFU xt ===∂+∂  usually we call it a 
continuity equation. It is differential equation that describes the 
conservative transport of some kind of quantity. Since mass, energy, 
momentum, and other natural quantities are conserved, a vast variety of 
physics may be described with continuity equations.  Actually, continuity 
equations are the (stronger) local form of conservation laws. 

 It is well known that system (1) can be diagonalized assuming that 
the solutions u and v are smooth. More precisely, system (1) is equivalent 
to the following system of continuity equations: 

( ) ,0,1 =ω∂λ+ω∂ xt vu  

( ) ,0,2 =η∂λ+η∂ xt vu  

where ( )vu,ω=ω  and ( )vu,η=η  are so called Riemann invariants, and 

,2,1, =λ ii  are eigenvalues of the matrix ( ) ( ( ),,, vufvuDF ∇=  ( ))., vug   

We provide necessary definitions (see e.g. [ ] :4,2  

Definition 1. By ( ) 2, R⊂Ω∈= vuU  we denote classical solutions 

to system (1).  By 2R⊂Ω  we denote set of possible states of the solution 
U. By  

( ) ( ) ( )( )
( ) ( )
( ) ( )






∂∂
∂∂

=∇=
vugvug
vufvuf

vugvufUDF
uu

uu
,,
,,

,,,  

we denote Jacobian of the flux vector ( ) ( ( ) ( )),,,,, vugvufvuF =  

( ) ., Ω∈vu   

By ( ) ,2,1,, == ivuRR ii  we denote right eigenvectors of the matrix 

( ).UDF  

Definition 2. Riemann invariants ( ) ,,:, 22 RR ⊂Ω→Ωηω  of 
system (1) are smooth scalar valued functions ω  and η  such that 

                  ( ) ( ) ( ) ( ) .,0,0 21 Ω∈=η= UURUDURUDw                        (2) 
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Definition 3. System of conservation laws (1) is called hyperbolic if 
the matrix ( )UDF  has two real eigenvalues ( )U1λ  and ( ),2 Uλ  and two 

linearly independent eigenvectors ( )UR1  and ( )UR2  for every .Ω∈U  

Remark 4. Note that, in particular, the linear independency of the 
vectors ( )UR1  and ( )UR2  means that it must be ,2,1,0 =≠ iRi  for 

every .Ω∈U  

The Riemann invariants are very important tool in investigating 
many physical problems ( see e. g. randomly chosen [3, 4, 5]).  In the 
current paper, by putting ( ),uv α=  we give the characterization of this 
important notion through an ordinary differential equation.  At the end 
of the paper, we propose similar procedure for nn ×  system of 
conservation laws.  

2. Main Result 

We want to describe Riemann invariants through an ordinary 
differential equation.  As we shall see, this is equivalent to reducing 
system (1) to a scalar conservation law.  In order to accomplish this we 
put 

( ),uv α=  

for an ( ).1 RC∈α  Substituting the latter relation in (1) we get: 

( )( ) ,0, =α∂+∂ uufu xt  

                 ( ) ( )( ) ( ) .,,0, RR ×∈=α∂+∂α′ +xtuuguu xt                           (3) 

Multiplying the first equation of the system by ( )uα′  and then 
subtracting it from the second one we get: 

               ( ( ) ( )( ) ) ( )( ) ,2 uugguufuf xvuxuu ∂α′+=∂α′+α′                             (4) 

where 

( ) ( ) ( ) ( ),,,, uvvvuvuu vuffvuff α=α= ∂=∂=  
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( ) ( ) ( ) ( ).,,, uvvvuvuu vuggvugg α=α= ∂=∂=  

From (4) it is natural to take 

                         ( ) ( )( ) ( ),2 uggufuf vuvu α′+=α′+α′                                     (5) 

which is actually the ordinary differential equation mentioned in the 
abstract.  Multiplying (5) by vf  we get: 

                         ( ) ( ( )) ( ).2 ugfgfufuff uvuvvuv α′+=α′+α′                           (6) 

Putting ( )ufZ vα′=  equation (6) becomes: 

( ) .02 =−−+ uvvu gfZgfZ  

Solving this simple algebraic equation we get: 

( )
2

42
uvvuvu gfgfgfZ +−±+−

=  

or, after recalling the form of Z: 

                        ( ) ( ) .2
42

uvvuvu
v

gfgfgfuf +−±+−
=α′                         (7) 

Then put ( ) .du
du α=α′  As we shall see in (12), from the hyperbolicity of 

(1), it must be .0≠vf  Therefore, we get from (7): 

                        ( ) .2
42

v
uvvuvu

f
gfgfgf

du
d +−±+−

=α                             (8) 

For functions ,:, 2 RR →ba and constants 1c and ,2c denote by 

                         ( ) 1, cua =α  and ( ) 2, cub =α                                             (9) 

equipotential manifolds in ( )α,u -plane (locally) defining integral curves 
corresponding to equations (8) with + and -, respectively. 

Now, it is easy to prove the following theorem. 
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Theorem 5. Riemann invariants ( )ηω,  for system (1) are given by 

                            ( ) ( ),,, vuavu =ω  and ( ) ( ),,, vubvu =η                        (10) 

for a and b given by (9)  

Proof. It is not difficult to compute right eigenvectors ,2,1, =iRi  to 

( ).UDF  It holds: 

( ) ( ( ) ),42, 2
,1 uvvuvuv gfgfgffvuR +−++−=  

             ( ) ( ( ) ).42, 2
,2 uvvuvuv gfgfgffvuR +−−+−=                      (11) 

Since we assumed that system (1) is strictly hyperbolic it must hold 

                                             ( ) ,0, ≠= vuff vv                                            (12) 

for ( ) ,, Ω∈vu  where 2R⊂Ω  is the set of possible states of the solution 

( )., vu  Indeed, if ( ) 0, 00 =vufv  for an ( ) ,, 00 Ω∈vu  it follows from (11) 

that either ( ) 0, 001 =vuR  or ( ) 0, 002 =vuR  contradicting hyperbolicity 
of the system (see Remark 4). 

 Thus, we can rewrite equations (2) for Riemann invariants in the 
following form: 

( ) ,042 2 =
∂
ω∂






 +−++−+

∂
ω∂

vgfgfgfuf uvvuvuv  

( ) .042 2 =
∂
η∂






 +−−+−+

∂
η∂

vgfgfgfuf uvvuvuv  

System of characteristics for the latter linear partial differential 
equations for ω  and η  are given by, respectively: 

( ) ,4,2 2
uvvuvuv gfgfgfvfu +−++−== ��  

               ( ) .4,2 2
uvvuvuv gfgfgfvfu +−−+−== ��                    (13) 

Now, we return to ordinary differential equations (8).  Introducing a 
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parameter R∈s  and putting ( )sα=α  and ( )suu =  we can rewrite (8) 

as the following systems: 

( ) ;4,2 2
uvvuvuv gfgfgffu +−++−=α= ��  

          ( ) ;4,2 2
uvvuvuv gfgfgffu +−−+−=α= ��                      (14) 

where ( )sα=α  and ( ).suu =  

Comparing (14) and (8) we immediately obtain the statement of the 
theorem. 

In what follows, we give a note on a general system of nn ×  
conservation laws: 

( ) ,0,,, 2111 =∂+∂ nxt uuufu …  

                             ( ) ,0,,, 2122 =∂+∂ nxt uuufu …                               

#  

( ) .0,,, 21 =∂+∂ nnxnt uuufu …                            (15) 

Similarly as before, we put 

( ) ,,2,1 niugu ii …==  

where it is presumed that ( ).1 RCgi ∈  So, (15) is equivalent to 

( ) ( )( ) ,0,,, 112111 =∂+∂ ugugufu nxt …  

( ) ( ) ( )( ) ,0,,, 11212112 =∂+∂′ ugugufuug nxt …  

 #  

( ) ( ) ( )( ) .0,,, 112111 =∂+∂′ ugugufuug nnxtn …  

Multiplying the first equation by ( ),1ugi′  subtracting ith equation from it, 

,,,2 ni …=  and arguing as in (4), we obtain system: 
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( ) ( )( ) ( ) ( )( ) ( ) ( )1211121
1

1121
1
1 ,,,,,, uguguguguu

fuguguu
f

nn
n

n ′





 ′

∂
∂

++
∂
∂ …"…  

 ( ) ( )( ) ( ) ( )( ) ( ),,,,,,, 11121
1
2

1121
1
2 uguguguu

fuguguu
f

nnn ′
∂
∂

++
∂
∂

= …"…  

( ) ( )( ) ( ) ( )( ) ( ) ( )1311121
1

1121
1
1 ,,,,,, uguguguguu

fuguguu
f

nn
n

n ′





 ′

∂
∂

++
∂
∂ …"…  

( ) ( )( ) ( ) ( )( ) ( ),,,,,,, 11121
3

1121
1
3 uguguguu

fuguguu
f

nn
n

n ′
∂
∂

++
∂
∂

= …"…  

#  

( ) ( )( ) ( ) ( )( ) ( ) ( )11121
1

1121
1
1 ,,,,,, uguguguguu

fuguguu
f

nnnn
n

n ′





 ′

∂
∂

++
∂
∂ …"…  

( ) ( )( ) ( ) ( )( ) ( ).,,,,,, 111211121
1

uguguguu
fuguguu

f
nn

n
n

n
n ′

∂
∂

++
∂
∂

= …"…  

(16) 

For practical reasons, we introduce notation ( ( ) ,,, 121 …uguu
f

j
i

∂
∂  

( )) ijn aug =1  and ( ) .1 ii xug =′  Now, in terms of linear algebra, system 

(16) can be rewritten as: 

,

11
2

21

22221

11211

2

11211

21212211

11211





































=





































nnnnn

n

n

nnnnn

n

n

x

x

aaa

aaa
aaa

x

x

xaxaxa

xaxaxa
aaa

#
…

#%##
…
…

#
…

#%##
…
…

(17) 

It is clear that the latter system does not have to posses any solution.  
Furthermore it is very complicated ( actually impossible in most cases ) to 
find analytic expression for a solution to system (17) if .2>n  Therefore, 
interesting question of finding connection between number of zeros to 
(17) and existence of the coordinate system of Riemann invariants for 
(15) remains open if .2>n  
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